Лекция 2
ГЛАВА 2. Основы Котлина
Что мы расскажем:
· Элементы программы
· Основные типы
· Неизменяемость
· Строки
· Обнуляемые типы
· Управляющие структуры
· Обработка исключений
Kotlin не сильно отличается от Java. Несмотря на то, что он представил довольно много функций, вы обнаружите, что Kotlin и Java больше похожи, чем различны. Это хорошая новость для Java-программистов, потому что это означает, что кривая обучения Kotlin не такая уж крутая.
Вам нужно будет привыкнуть к нескольким новым вещам, например, к выражениям и операторам в Kotlin (они совершенно противоположны Java; например, присваивания являются операторами в Kotlin, а в Java - выражениями). В этой главе мы рассмотрим некоторые основы Kotlin, которые мы сможем использовать в качестве базовых знаний в следующих главах.
Элементы программы
Изучая новый язык, правильный язык, например, французский, испанский и т. д., Вы, вероятно, начнете с частей речи и правил, которые ими управляют. Было бы легче подойти к языку, если бы у нас было базовое понимание того, как его части соединяются.
Программа на Kotlin содержит литералы, переменные, выражения, ключевые слова и многое другое, мы рассмотрим некоторые из них в этом разделе.
Литералы
Kotlin предоставляет литералы для основных типов (числа, символьные, логические, строковые).
Листинг 2-1. Буквальные примеры
var intLiteral = 5
var doubleLiteral = .02
var stringLiteral = "Привет"
var charLiteral = '1'
var boolLiteral = true
В листинге 2-1 значения 5, .02, «Hello», '1' и true являются литералами типов Integer, Double, String, Character и Boolean соответственно.
Переменные
Переменная - это то, что мы используем для управления данными или, точнее, значением. Значения - это объекты, которые вы можете хранить, манипулировать, распечатывать, отправлять или извлекать из сети. Чтобы мы могли работать со значениями, нам нужно поместить их в переменные. Переменная в Kotlin создается путем объявления идентификатора с использованием ключевого слова var, за которым следует тип, как в операторе
var foo: Int
В этом операторе foo - это идентификатор, а Int - тип. Kotlin определяет типы, помещая его справа от идентификатора и отделяя от него двоеточием.
Теперь, когда переменная объявлена, мы можем присвоить ей значение, например:
foo = 10,
а затем используйте его в функции, например:
println (foo)
Мы можем объявлять и определять переменные в одной строке, как в Java. Снова пример с var foo.
var foo: Int = 10
println (foo)

Мы все еще можем сократить приведенную выше инструкцию присваивания, опуская тип (Int).
См. Пример кода:
var foo = 10
println (foo)

Нам не всегда нужно объявлять или записывать тип переменных; Kotlin достаточно умен, чтобы определить тип, когда вы присваиваете буквальное значение переменной; это называется выводом типа. В случаях, когда мы явно указываем Kotlin тип переменной, обратите внимание, что он находится справа от имени переменной (foo), тогда как в Java, наоборот, тип переменной находится слева от идентификатора. Причина, по которой Kotlin не следовал соглашению Java о размещении типа слева от идентификатора, заключается в том, что в Kotlin мы не всегда пишем тип.
var foo = 10 // компилятор знает, что 10 - целочисленный литерал
var boo = .02 // двойной литерал делает boo двойным типом

Kotlin использует другое ключевое слово для объявления переменных, ключевое слово val. Переменные, объявленные с помощью этого ключевого слова, могут быть инициализированы только один раз в блоке выполнения, в котором они были определены. Это делает их фактически постоянными. Считайте val эквивалентом ключевого слова final в Java - как только вы инициализируете его значением, вы больше не сможете его изменить, они неизменяемы. A переменные, созданные с помощью var, являются изменяемыми, их можно изменять сколько угодно раз.
Переменные val объявляются и инициализируются так же, как переменные
var: val a = 10 // объявление и инициализация в той же строке.
Их также можно объявить и инициализировать позже, как приведенные здесь инструкции:
val a: Int
а = 10

Просто помните, что переменные, объявленные с ключевым словом val, являются окончательными и не могут быть повторно присвоены после того, как вы инициализировали их значением. Фрагмент кода здесь не будет работать:
val boo = "Привет"
boo = "World" // boo уже имеет значение

Если вы считаете, что вам нужно изменить значение переменной boo позже, измените объявление с val на var.
Совет IntelliJ. Если вы попытаетесь повторно присвоить значение переменной, которая была объявлена ​​с помощью ключевого слова val, IntelliJ даст вам достаточно визуальных подсказок, что «val не может быть переназначено», даже до того, как вы попытаетесь скомпилировать код.
Выражения и утверждения
Выражение представляет собой комбинацию операторов, функций, литеральных значений, переменных или констант и всегда разрешаются в значение. Это также может быть частью более сложного выражения. Утверждение может содержать выражения, но само по себе оно не преобразуется в значение. Это не может быть частью других заявлений. Это всегда элемент верхнего уровня в его ограждающем блоке.
По большей части то, что вы узнали на Java о выражениях и утверждениях, справедливо и для Kotlin, но есть небольшие различия. Продвигаясь дальше, я укажу на различия между Java и Kotlin, когда дело касается операторов и выражений. Некоторые из этих различий:
Присваивания - это выражения в Java, но они являются операторами в Kotlin. Это означает, что вы не можете передавать операции присваивания в качестве аргумента операторам цикла, например, while. См. Листинг 2-2.
Листинг 2-2. Операция присваивания как аргумент while
while ((rem = a% b)! = 0) {
 а = b
 b = rem
}
println (b)

Kotlin не позволит вам скомпилировать, потому что оператор while ожидает выражения, а присваивания не являются выражениями. Чтобы предыдущий пример кода (листинг 2-2) работал на Kotlin, вам придется написать его по-другому, как показано в листинге 2-3.
Листинг 2-3. Использование цикла while в Kotlin
var foundGcf = false
while (! foundGcf) {
 rem = a % b
 if (rem! = 0) {
 а = b
 b = rem
 }
 else {
 foundGcf = true
 }
}
println (b)

Листинг 2-3 немного более подробный, чем то, к чему вы привыкли (в Java), и в нем больше символов для ввода, но цель кода яснее и понятнее.
Еще одно заметное различие между Kotlin и Java, когда дело доходит до выражений и операторов, заключается в том, что в Kotlin большинство управляющих структур (за исключением do и do / while) являются выражениями, а в Java - операторами.
Ключевые слова
Ключевые слова - это зарезервированные термины, которые имеют особое значение для компилятора, и как таковые они не могут использоваться в качестве идентификаторов для каких-либо элементов программы, таких как классы, имена переменных, имена функций и интерфейсы.
В Kotlin есть жесткие, мягкие и модифицирующие ключевые слова. Жесткие ключевые слова всегда интерпретируются как ключевые слова и не могут использоваться в качестве идентификаторов. Вот некоторые примеры таких как, break, class, continue, do, else, false, while, this, throw, try, super и when.
Мягкие ключевые слова действуют как зарезервированные слова в определенном контексте, где они применимы; в противном случае их можно использовать как обычный идентификатор. Вот некоторые примеры мягких ключевых слов: file, finally, get, import, receiver, set, constructor, delegate, get, by, and where.
Наконец, есть ключевые слова-модификаторы. Эти вещи действуют как зарезервированные слова в списках модификаторов объявлений; в противном случае их можно использовать как идентификаторы. Вот некоторые примеры этих вещей: abstract, actual, annotation, companion, enum, final, infix, inline, lateinit, operator и open.
Совет по IntelliJ. Если вы используете IntelliJ, вам не нужно запоминать список ключевых слов. IDE предоставит вам достаточно визуальных подсказок, если вы случайно используете ключевое слово в качестве идентификатора.
Пробелы
Как и Java, Kotlin также является токенизированным языком; пробелы не имеют значения, и их можно игнорировать. Вы можете писать свои коды с экстравагантным использованием пробелов, например
fun main (args: Array <String>) {
println ("Привет")
}

или вы можете написать его с очень небольшим количеством, как в следующем примере:
fun main (args: Array <String>) {println ("Привет")}
В любом случае компилятору все равно, поэтому пишите свои коды на благо людей, которым, возможно, не повезло поддерживать наши коды. Забудьте о компиляторе - ему все равно не нужны пробелы. Используйте пробелы, чтобы улучшить код и сделать его читабельным, возможно, что-то вроде
fun main (args: Array <String>) {
 println ("Hello")
}

Операторы
Как и в Java и других языках программирования, Kotlin поддерживает множество операторов и символов, которые мы можем использовать для формулирования выражений и утверждений. В таблице 2-1 показаны некоторые из них.
Таблица 2-1. Операторы и символы Котлина
	Операторы или символ
	Что это означает

	+, -, *, /,%
	Это обычные математические операторы - они делают именно то, что вы от них ожидаете. Никакой разницы с Java. Но мы должны отметить, что звездочка или символ звездочки (*) также используются для передачи массива в параметр vararg.

	=
	Символ равенства используется для оператора присваивания (в Kotlin назначение - это оператор, а в Java - выражение).

	+ =, - =, * =,
/ =,% =
	Это расширенные операторы присваивания. + = Можно использовать так a + = 1, что является сокращением от a = a + 1; - = можно использовать как - = 1, что является сокращением от a = a -1, и так далее.

	&&, ||,!
логическое 'и',
'или не'
операторы
	Когда вам нужно построить сложные или составные логические операции, вы будете использовать эти операторы.
Короткое замыкание и (&&) ведут себя так же, как в Java. Когда один из операндов оценивается как ложь, другой операнд больше не будет оцениваться, и все выражение оценивается как ложное. Хотя логическое «и» не выполняет оценку короткого замыкания; воспринимайте это как эквивалент оператора & в Java.
Короткое замыкание или (||) действует так же, как в Java. В Котлине нет однотрубного оператора; вместо этого в нем есть оператор «или», который выполняет логическое ИЛИ без короткого замыкания.

	==,! =
	Это операторы равенства. Поскольку в Kotlin нет примитивных типов (как в Java), вы можете использовать эти операторы для сравнения любого типа, базового или другого:
fun main (args: Array <String>) {
var a = "Привет"
var b = "Привет"
if (a == b) {// это истинно
println ("$ a равно $ b")
}
}
В Java мы не сможем проводить подобное сравнение объектов с помощью оператора двойного равенства. Объекты (например, строки) должны использовать метод .equals (), если мы хотим проверить равенство. Однако в Котлине нам не нужно беспокоиться о таких вещах. Мы используем оператор двойного равенства для сравнения строк. Kotlin внутренне переводит это как вызов метода .equals ().

	===,! ===
	Ссылочное равенство проверяется операцией === (и ее отрицательным аналогом! ==). a === b оценивается как истина тогда и только тогда, когда a и b указывают на один и тот же объект. Например,
var p1 = Person("John")
var p2 = Person("John")
if(p1 === p2) { // false
println("p1 == p2")
}
В приведенном выше примере p1 и p2 не указывают на один и тот же объект; следовательно, тройное равенство не будет оцениваться как истина.

	<,>, <=,> =
	Операторы сравнения. Kotlin переводит их в вызовы compareTo () - никаких примитивных типов, помните?

	[]
[,]
	Операторы доступа к индексу используются как удобный способ доступа к элементам списка или значениям карты. Вместо использования get (index) или get (key) в стиле Java мы можем использовать индексацию массива для извлечения элементов.
fun main (args: Array <String>) {
val fruit = listOf ("Яблоко", "Банан", "Апельсин")
println (fruit.get (2)) // Банан
println (fruit [2]) // Банан
}

Блоки
Часто вам может потребоваться написать несколько утверждений, и вам нужно будет сгруппировать их вместе. Блоки позволяют нам это делать. Лексический символ для блоков - пара фигурных скобок; их также иногда называют французскими или волнистыми (фигурными) скобками. Блоки можно найти во многих конструкциях Kotlin, таких как классы, например, в следующем коде:
class Person (val name: String) {
}

при определении интерфейсов, таких как
interface Human {
 fun walk()
 fun talk()
}
в функциях, например
fun main(args: Array<String>) {
 greet("John")
}
fun greet(name:String) {
 println("Hello $name")
}

в конструкциях цикла, таких как цикл while
var counter = 0
while (counter++ != 5) {
 println("counter $counter")
}

при использовании конструкции try-catch

val num = "1"
val ans = try {
 Integer.parseInt(num)
}
catch(e:Exception) {
 e.printStackTrace()
}

и любая другая структура управления, которая может понадобиться для группировки операторов.
Комментарии
Комментарии бесполезны для компилятора; он их игнорирует. Но они полезны другим людям (и вам), которые будут читать коды. Это делает их отличным инструментом для того, чтобы сделать код более понятным, потому что вы можете использовать комментарии, чтобы сбрасывать свои мыслительные процессы во время написания кода. Он проясняет и передает ваши намерения.
Есть три способа написания комментариев:
1. Однострочные комментарии, также известные как встроенные комментарии. Они записываются с помощью двух косых черт. Компилятор будет игнорировать все, что находится справа от косой черты до конца строки, см. Пример:
// Этот оператор будет проигнорирован
var a = 0 // так будет и эта строка

2. Многострочные комментарии, также известные как комментарии в стиле C. Они называются так потому, что произошли в основном из языка C. Это style полезен, если ваши комментарии занимают несколько строк. См. Пример:
/ *
 Все, что находится внутри пары этих косых черт и звездочек, будет игнорироваться компилятором.
* /

3. KDoc похож на Javadoc, он начинается с / ** и заканчивается * /. Это форма комментирования очень похожа на многострочный комментарий (см. выше), но используется для предоставления документации API для кодов Kotlin. В листинге 2-4 показано, как использовать синтаксис KDoc.
Листинг 2-4. Синтаксис KDoc
/ **

Это пример документации с использованием синтаксиса KDoc.

@author Ted Hagos
@constructor
*/
class Person(val name: String) {
 /**

 Это еще один комментарий KDoc

 @return
 */
 fun foo(): Int{
 }
}

Совет IntelliJ. Вы можете прокомментировать несколько строк кода в IntelliJ, выбрав строки, которые вы хотите прокомментировать, и используя одно из сочетаний клавиш, чтобы закомментировать коды.
В Windows и Linux это следующие ключи:
CTRL + / - комментарий с использованием //
CTRL + Shift + / - комментарий с использованием / * * /
В macOS это следующие ключи:
⌘ + / - комментарий с использованием //
⌘ + ⌥ + / - комментарий с использованием / * * /

Основные типы
В Kotlin есть несколько основных типов, но они не совпадают с примитивными типами Java, поскольку все типы в Kotlin являются объектами. Их называют просто базовыми типами, потому что они очень часто используются. Это числа, символы, логические значения, массивы и строки – мы посмотрим их в этом разделе.
Числа и буквальные константы
Существуют встроенные типы для обработки чисел (показаны в таблице 2-2). Во время выполнения они могут быть представлены как примитивные значения, но для всех целей и задач они не кажутся программисту примитивными. Они выглядят как настоящие объекты с функциями-членами и свойствами.
Таблица 2-2. Kotlin's Number Встроенный тип
	Тип
	Битовая ширина

	Double
	64

	Float
	32

	Long
	64

	Int
	32

	Short
	16

	Byte
	8

Kotlin обрабатывает числа очень близко к тому, как обрабатывает их Java, но с некоторыми заметными различиями. Например, расширяющие преобразования больше не являются неявными; вам нужно будет сознательно выполнять преобразования.
var a = 10L // a - это длинный литерал, обратите внимание на постфикс L
var b = 20
var a = b // это не сработает
var a = b.toLong () // это сработает

Когда целые числа используются как буквальные константы, они автоматически становятся Ints. Чтобы объявить литерал типа Long, используйте постфикс L, например
var a = 100 // литерал Int
var b = 10L // Длинный литерал

Вы можете использовать подчеркивание в числовых литералах, чтобы сделать их более читаемыми. Эта функция была представлена ​​в Java 7 и ее более поздних версиях.
var oneMillion = 1_000_000
var creditCardNumber = 1234_5678_9012_3456

Литералы с десятичными позициями автоматически становятся двойными. Чтобы объявить литерал с плавающей запятой, используйте постфикс F, например,
var a = 3.1416 // Двойной литерал
var b = 2.54 // литерал с плавающей запятой

Каждый числовой тип можно преобразовать в любой из числовых типов. Это означает, что все типы Double, Float, Int, Long, Byte и Short поддерживают следующие функции-члены:
· toByte (): байт
· toShort (): короткий
· toInt (): Int
· toLong (): длинный
· toFloat (): Float
· toDouble (): двойной
· toChar (): Char

Персонажи
Символы в Kotlin нельзя рассматривать как числа. Вы не можете делать следующее:
fun checkForKey (keyCode: Char) {
 if (keyCode == 97) {// не сработает, keyCode не является числом
 }
}

Символьные литералы создаются с помощью одинарных кавычек, например
var enterKey = 'а'
Как и в Java, вы можете использовать escape-последовательности, такие как \ t, \ b, \ n, \ r, \ ", \", \\ и \ $, а если вам нужно закодировать любой другой символ, вы можете использовать синтаксис Unicode (например, \ uFF00).
Не будем забывать, что персонажи - это объекты в Kotlin, поэтому вы можете вызывать для них функции-члены. В листинге 2-5 показан фрагмент, демонстрирующий некоторые сценарии использования.
Листинг 2-5. Функции-члены символьного типа
val a = 'а'
println (a.isLowerCase ()) // правда
println (a.isDigit ()) // ложь
println (a.toUpperCase ()) // А
val b: String = a.toString () // преобразует его в строку

Булевы
Логические значения представлены литералами true и false. В Kotlin нет понятия правдивых и ложных значений, как в других языках, таких как Python или JavaScript. Это означает, что для конструкций, которые ожидают логический тип, вы должны предоставить логический литерал, переменную или выражение, которое будет принимать значения true или false.
var count = 0
if (count) println ("ноль") // не сработает
if ("") println ("empty") // тоже не сработает

Массивы
В Kotlin нет объекта массив, подобного тому, который был создан в Java с использованием синтаксиса квадратных скобок. Массив Kotlin является универсальным классом, у него есть параметр типа. Мы уже довольно давно используем массивы Kotlin, потому что небольшие фрагменты кода и пример «Hello World» в предыдущей главе описывали использование массивов. Аргумент основной функции на самом деле является массивом строк. Давайте еще раз посмотрим на эту основную функцию, просто чтобы напомнить.
fun main (args: Array <String>) {
}
Есть несколько способов создать массив. Их можно создать с помощью функций arrayOf () и arrayOfNulls (), и, наконец, они могут быть созданы с помощью конструктора Array. В листинге 2-6 приведены примеры кодов того, как с ними работать.
Листинг 2-6. Работа с типом массива
fun main (args: Array <String>) {
 var emptyArray = arrayOfNulls <String> (2) ➊
 emptyArray [0] = "Привет" ➋
 emptyArray [1] = "Мир"
for (i in emptyArray.indices) println(emptyArray[i]) ➌
 for (i in emptyArray) println(i) ➍
 var arrayOfInts = arrayOf (1,2,3,4,5,6) ➎
 arrayOfInts.forEach {e -> println (e)} ➏
 var arrayWords = "Быстрая коричневая лисица" .split ("") .toTypedArray () ➐
 arrayWords.forEach {элемент -> println (элемент)}
}

➊ Мы использовали функцию arrayOfNulls для создания массива из двух элементов.
➋ Мы можем присвоить значения конкретным элементам массива. Нам просто нужно указать позицию элемента в массиве, используя его индекс. Этот синтаксис доступа к элементу массива – это так же, как в Java.
➌ Мы можем использовать цикл for для просмотра содержимого массива. В этом примере мы использовали индексы для доступа к элементу массива.
➍ Это более прямой способ доступа к элементу массива. У объекта Array есть итератор, поэтому мы можем использовать этот итератор, чтобы сразу перейти к элементу массива.
➎ Это создает массив Ints с помощью функции arrayOf ().
➏ В этом примере функция forEach используется для обхода элементов массива. Использование функции forEach считается более идиоматичным (и более эффективным).
➐ Это создает массив с использованием ArrayList (arrayWords). Список arrayWords был создан путем вызова функции-члена split () класса String.
Строки и шаблоны строк
Многое из того, что мы узнали о Java Strings, все еще применимо в Kotlin; следовательно, этот раздел будет коротким.
Самый простой способ создать String - использовать экранированный строковый литерал - экранированные строки на самом деле представляют собой те строки, которые мы знаем из Java. Эти строки могут содержать escape-символы, такие как \ n, \ t, \ b и т. д. См. фрагмент кода ниже.
var str: String = "Hello World \ n"
В Kotlin есть еще один вид строк, который называется необработанной строкой. Необработанная строка создается с использованием разделителя тройных кавычек. Они могут не содержать escape-последовательностей, но могут содержать новые строки, например
var rawStr = "" "Эми Понд, тебе лучше кое-что понять обо мне, потому что это важно, и однажды твоя жизнь может зависеть от этого:
 Я определенно сумасшедший с коробкой!
 " ""

Еще пара вещей, которые нам нужно знать о строках Kotlin:
1. У них есть итераторы, поэтому мы можем перемещаться по символам, используя для цикла:
val str = "Быстрая коричневая лиса"
for (i in str) println(i)

2. Доступ к его элементам можно получить с помощью оператора индексации.
(str [elem]), что очень похоже на массивы
println (str [2)) // возвращает 'e'

3. Мы больше не можем преобразовывать числа (или что-либо еще) в String, просто добавляя к нему пустой строковый литерал:
var strNum = 10 + "" // это больше не будет работать
var strNum = 10.toString () // теперь мы должны явно преобразовать.

Мы все еще можем использовать String.format и System.out.printf в Kotlin; в конце концов, мы можем использовать коды Java из Kotlin. По-прежнему можно писать такие программы, как код фрагмента, показанный в Листинге 2-7.
Листинг 2-7. Использование String.format и printf
var name = "John Doe"
var email = "john.doe@gmail.com"
var phone = "(01)777-1234"
var concat = String.format("name: %s | email: %s | phone: %s", name, email,
phone)
println(concat)
// prints
// name: John Doe | email: john.doe@gmail.com | phone: (01)777-1234

Предпочтительный способ составления строк в Kotlin - использование строковых шаблонов, например
var concat = "name: $ name | email: $ email | phone: $ phone"
Println (CONCAT)
// печатает
// имя: Джон Доу | электронная почта: john.doe@gmail.com | телефон: (01) 777-1234

Строки Kotlin могут содержать шаблонные выражения. Это фрагменты кода, которые оцениваются. Результат оценки вставляется (объединяется) в строку.
Выражение шаблона начинается со знака доллара ($), за которым следует выражение.
См. Примеры в листинге 2-8.
Листинг 2-8. Использование шаблонных выражений
fun main(args:Array<String>) {
 var name = "John Doe"
 println("Hello $name") ➊
 println("The name '$name' is ${name.length} characters long") ➋
 println("Hello ${foo()}") ➌
}
fun foo(): String {
 return "Boo"
}

➊ Показывает базовое использование строки шаблона. Выражение шаблона создается с помощью символа $, за которым сразу следует идентификатор. Значение идентификатора оценивается, разрешается и, наконец, вставляется в тело строки, где объявляется выражение шаблона.
➋ В этом примере name.length заключено в фигурные скобки. Это связано с тем, что символ $ является правоассоциативным - он будет оценивать выражение, которое находится непосредственно справа от него. В нашей ситуации это не сработает, потому что мы не хотим оценивать переменную name; вместо этого мы хотим разрешить name.length - следовательно, необходимо заключить его в фигурные скобки.
➌ Мы не ограничиваемся простыми переменными; мы даже можем писать функции внутри шаблонных выражений.
Контроль выполнения программы
Операторы программы по умолчанию выполняются последовательно, один за другим, линейно. Существуют конструкции, которые могут вызвать отклонение программ от линейного потока.
Некоторые из них могут вызвать разветвление или ветвление потока, а другие конструкции могут заставить поток программы перемещаться по кругу, как в цикле. Эти конструкции являются предметом данного раздела.
Использование if
Основная форма конструкции if:
оператор if (выражение)
где выражение преобразуется в логическое значение. Если выражение истинно, оператор будет выполнен; в противном случае оператор будет проигнорирован, и управление программой перейдет к следующему исполняемому оператору. Когда вам нужно выполнить более одного оператора, вы можете использовать блок с конструкцией if, например
if (выражение) {
 заявления
}

Посмотрим, как это выглядит в коде.
val theQuestion = "Доктор Кто"
val answer = "Тета-сигма"
val rightAnswer = ""
if (answer == rightAnswer) {
 println ("Вы правы")
}

Пока конструкция if в Kotlin ведет себя точно так же, как и в Java. Он также поддерживает предложения else if и else, как показано в следующем фрагменте:
val d = Date ()
val c = Calendar.getInstance ()
val day = c.get (Calendar.DAY_OF_WEEK)
if (day == 1) {
 println («Сегодня воскресенье»)
}
else if (day == 2) {
 println («Сегодня понедельник»)
}
else if (day == 3) {
 println («Сегодня вторник»)
}

Новое в слове if в Kotlin заключается в том, что это выражение, а это значит, что мы можем делать такие вещи, как
val theQuestion = "Доктор Кто"
val answer = "Тета-сигма"
val rightAnswer = ""
var message = if (answer == rightAnswer) {
 "Ты прав"
}
else {
 "Попробуй еще раз"
}

Строка в первом блоке конструкции if будет возвращена в переменную сообщения, если условие истинно; в противном случае String во втором блоке будет возвращенным значением. Мы даже можем опустить фигурные скобки на блоках, так как блоки содержат только одиночные инструкции.
var message = if (answer == rightAnswer) «Вы правы» else «Повторите попытку»
Приведенный выше пример кода, вероятно, напомнил бы вам о тернарном операторе в Java.
Кстати, Kotlin не поддерживает тернарный оператор, но не волнуйтесь, он вам не нужен. Если конструкция if является выражением, если вы чувствуете, что вам нужно написать код, требующий тернарного оператора, просто следуйте предыдущему примеру кода.
Утверждение когда
В Kotlin нет оператора switch, но есть конструкция when. Его форма и структура поразительно похожи на оператор switch. В простейшем виде это можно реализовать так:
val d = Date ()
val c = Calendar.getInstance ()
val day = c.get (Calendar.DAY_OF_WEEK)
when (day) {
 1 -> println («Воскресенье»)
 2 -> println («Понедельник»)
 3 -> println ("вторник")
 4 -> println («Среда»)
}

when сопоставляет аргумент (переменную день) со всеми ветвями последовательно, пока не найдет совпадение; обратите внимание, что в отличие от операторов switch, когда совпадение найдено, оно не проходит и каскадно не переходит в следующую ветвь - следовательно, нам не нужно помещать оператор break.
Конструкцию when также можно использовать как выражение, и когда она используется как таковая, каждая ветвь становится возвращаемым значением выражения. См. пример кода:
val d = Date ()
val c = Calendar.getInstance ()
val day = c.get (Calendar.DAY_OF_WEEK)
var dayOfweek = when (day) {
[bookmark: _GoBack] 1 -> «Воскресенье»
 2 -> «Понедельник»
 3 -> «Вторник»
 4 -> «Среда»
 else -> "Неизвестно"
}
Просто не забудьте включить предложение else, когда when используется как выражение. Компилятор тщательно проверяет все возможные пути, и он должен быть исчерпывающим, поэтому предложение else становится обязательным.
Вы не ограничены числовыми литералами; вы можете использовать самые разные типы для веток, как показано в листинге 2-9.
Листинг 2-9. Как писать ветви внутри конструкции When
fun main (args: Array <String>) {
 print («Каков ответ жизни?»)
 var response: Int? = readLine () ?. toInt () ➊
 val message = when (ответ) {
 42 -> "До свидания и спасибо за рыбу"
 43, 44, 45 -> "либо 43,44, либо 45" ➋
 в 46 .. 100 -> «сорок шесть до ста» ➌
 else -> "Не то, что я ищу" ➍
 }
 println (сообщение)
}

➊ readLine () читает ввод с консоли. Пока не беспокойтесь о вопросительных знаках; мы вернемся к этому в следующих разделах.
➋ Условия ветвления могут быть объединены запятой.
➌ Мы можем проверить, входит ли он в диапазон или коллекцию.
➍ Предложение else требуется, когда when используется в качестве выражения.
Утверждение while
Операторы while and do . . while работают точно так же, как и в Java, это также операторы, а не выражения. Мы не будем тратить слишком много времени на циклы while and do . . while.
Здесь показано базовое использование цикла while в качестве напоминания.
fun main (args: Array <String>) {
 var count = 0
 val finish = 5
 while (count ++ < finish) {
 println ("счетчик = $ count")
 }
}

Циклы for
В Kotlin нет традиционного цикла for как в Java 7 и более ранних версий, который выглядит следующим образом:
for (int i = 0; i <10; i ++) {
 утверждения
}

Вместо этого цикл for в Kotlin работает с вещами, у которых есть итератор. Если вы видели цикл for в JavaScript, C # или Java 8, то Kotlin намного ближе к этому. Базовый пример показан в листинге 2-10.
Листинг 2-10. Базовый для цикла
fun main (args: Array <String>) {
 val words = "Быстрая коричневая лиса" .split ("") ➊
 for (word in words) {➋
 println (word) ➌
 }
}

➊ Метод split () класса String возвращает тип ArrayList, мы можем перебрать его.
➋ Для каждого предмета (word) в коллекции (words) мы можем;
➌ распечатать элемент.
Если вам нужно работать с числами в цикле for, вы можете использовать Ranges. Диапазон - это тип, представляющий арифметическую прогрессию целых чисел. Диапазоны создаются с помощью функции rangeTo (), но мы обычно используем ее в форме оператора (..). Чтобы создать диапазон целых чисел от 1 до 10, мы пишем так:
var zeroToTen = 0..10
Мы можем использовать ключевое слово in для проверки членства.
if (9 in zeroToTen) println («9 в zeroToTen»)
Чтобы использовать диапазоны в циклах for, мы можем начать с чего-то похожего на код, показанный в листинге 2-11.
Листинг 2-11. Использование диапазонов в цикле
fun main (args: Array <String>) {
 for (i in 1..10) {
 рrintln (i)
 }
}

Обработка исключений
Обработка исключений в Kotlin очень похожа на Java: здесь также используется конструкция try-catch-finally. Все, что мы узнали об обработке исключений в Java, прекрасно переносится на Kotlin. Однако Kotlin упрощает обработку исключений, просто используя unchecked исключения. Это означает, что писать блоки try-catch теперь необязательно. Вы можете это делать, а можете и не делать. Давайте рассмотрим код, показанный в листинге 2-12.
Листинг 2-12. Операции ввода-вывода без блоков try-catch
import java.io.FileReader ➊
fun main (args: Array <String>) {
 var fileReader = FileReader ("README.txt") ➋
 var content = fileReader.read () ➌
 рrintln (content)
}
➊ Мы можем использовать стандартную библиотеку Java в Kotlin.
➋ Это может вызвать исключение FileNotFoundException.
➌ И это может вызвать «IOException», но Kotlin с радостью позволяет нам кодировать, не обрабатывая возможные исключения, которые могут возникнуть.
Хотя Kotlin позволяет нам избежать обработки исключений, мы все же можем это сделать, а в некоторых ситуациях нам действительно может потребоваться. Когда это произойдет, просто напишите код обработки исключений, как вы это делали в Java; см. Листинг 2-13 для примера.
Листинг 2-13. Блокировка попыток Kotlin
import java.io.FileNotFoundException
import java.io.FileReader
import java.io.IOException

fun main(args: Array<String>) {
 var fileReader: FileReader
 try {
 fileReader = FileReader("README.txt")
 var content = fileReader.read()
 println(content)
 }
 catch (ffe: FileNotFoundException) {
 println(ffe.message)
 }
 catch(ioe: IOException) {
 println(ioe.message)
 }
}

Обработка Nulls
Распространенный источник ошибок и дорогостоящих переделок в Java можно отнести к тому, как программисты обрабатывают нулевые значения. Некоторые из нас действительно прилежные и такие настойчивые программисты, что в этом обсуждении больше нет необходимости. Но не все программисты созданы равными, и большинству из нас нужно напоминать о возможности NullPointerExceptions. Обработка нулевых значений - такая большая проблема в Java, что Kotlin принял очень осознанное решение ввести концепцию типа Nullable.
В Котлине, когда мы объявляем переменную вроде
var str: String = "Привет"
str = null // не сработает

мы никогда не сможем установить значение этой переменной равным null. Мы можем присвоить ему другое значение String, но Kotlin гарантирует, что str никогда не будет нулевым. Если по какой-то причине вам действительно нужно, чтобы эта переменная имела значение NULL, вы должны явно указать Kotlin, что str является типом, допускающим значение NULL. Чтобы сделать String (или любой тип) Nullable, мы используем символ вопросительного знака в качестве постфикса к типу, например
var str: String? = "Привет"
После объявления типа как Nullable теперь мы должны сделать некоторые вещи, которые Kotlin делал за нас. Для типов, не допускающих значения NULL, Kotlin гарантирует, что их довольно безопасно использовать в таких операциях, как присваивание, печать, включение в выражения и т. д.
Когда мы делаем типы Nullable, Kotlin предполагает, что мы знаем, что делаем, и что мы достаточно ответственны, чтобы написать необходимые защитные условия для предотвращения исключений NullPointerExceptions. Kotlin предполагает, что мы сделаем что-то вроде кода, показанного в листинге 2-14.
Листинг 2-14. Демонстрация типов, допускающих значение NULL
fun main (args: Array <String>) {
 var a = arrayOf (1,2,3)
 printArr (нуль)
}
fun printArr (arr: Array <Int>?) {➊
 if (arr! = null) {➋
 arr.forEach {i -> println (i)} ➌
 }
}
➊ Мы объявляем массив <Int> допускающим значение NULL. Это означает, что мы можем передать null в printArr ().
➋ Поскольку больше не гарантируется, что arr будет ненулевым, мы должны вручную проверять нулевые значения, прежде чем выполнять некоторые операции, которые связаны с локальной переменной arr.
➌ Если arr не равно нулю, мы можем безопасно выполнить эту операцию.
Котлин представил оператор, который мы можем использовать для обработки типов, допускающих значение NULL. Он называется оператором безопасного вызова и обозначается знаком вопроса, за которым следует точка ?.
Мы можем заменить весь блок if, который выполняет нулевую проверку, всего одним оператором:
arr? .forEach {i -> println (i)}
Безопасный вызов сначала проверяет, является ли arr нулевым; в противном случае операция forEach не будет выполнена. Только если arr не равно нулю, массив будет пройден.
В листинге 2-15 показан отредактированный код для листинга 2-14.
Листинг 2-15. Оператор безопасного вызова
fun main (args: Array <String>) {
 var a = arrayOf (1,2,3)
 printArr (null)
}
fun printArr (arr: Array <Int>?) {
 arr? .forEach {i -> println (i)}
}

Поведение Kotlin по умолчанию в отношении обнуления объектов должно помешать многим из нас делать вещи, которые позорят себя, потому что оно не позволяет переменным по умолчанию иметь значение null. Однако, если мы думаем, что знаем, что делаем, и определенные ситуации заставят нас использовать типы, допускающие значение NULL, мы все равно можем это сделать. Только не забудьте использовать безопасный оператор вызова; это идиоматично по сравнению с выполнением нулевых проверок с использованием if.
Краткое содержание главы
• Программные элементы Kotlin не сильно отличаются от Java; в нем также есть операторы, блоки, операторы, выражения и т. д. Однако в Kotlin некоторые конструкции, которые считаются операторами в Java, являются выражениями в Kotlin, а некоторые, которые считались выражениями в Java, являются операторами в Kotlin (например, операция присваивания).
· Основные типы Kotlin не совпадают с примитивными типами Java. Все в Котлине - объекты.
· Есть два способа объявить переменную в Kotlin. Когда используется ключевое слово var, переменная является изменяемой. Когда используется ключевое слово val, переменная неизменяема.
· Строки в Kotlin имеют итераторы. Кроме того, их легче составлять и комбинировать с помощью шаблонных выражений.
· Когда переменные объявляются в Kotlin, они по умолчанию не имеют значения Nullable, если мы не объявим их иначе.
· В Kotlin нет оператора switch, но есть конструкция when.
· В Kotlin нам больше не нужно писать try-catch, потому что он в основном использует неотмеченные исключения.
В следующей главе вы узнаете:
· Как (легко) создавать функции в Kotlin
· Почему нам не нужно выполнять множество перегрузок методов в Kotlin
· Как мы можем отказаться от написания служебных функций и вместо этого использовать функции расширения Kotlin (в Java их нет)
